Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Feedback inhibition of deoxy-D-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway.

Identifieur interne : 002693 ( Main/Exploration ); précédent : 002692; suivant : 002694

Feedback inhibition of deoxy-D-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway.

Auteurs : Aparajita Banerjee [États-Unis] ; Yan Wu ; Rahul Banerjee ; Yue Li ; Honggao Yan ; Thomas D. Sharkey

Source :

RBID : pubmed:23612965

Descripteurs français

English descriptors

Abstract

The 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway leads to the biosynthesis of isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), the precursors for isoprene and higher isoprenoids. Isoprene has significant effects on atmospheric chemistry, whereas other isoprenoids have diverse roles ranging from various biological processes to applications in commercial uses. Understanding the metabolic regulation of the MEP pathway is important considering the numerous applications of this pathway. The 1-deoxy-D-xylulose-5-phosphate synthase (DXS) enzyme was cloned from Populus trichocarpa, and the recombinant protein (PtDXS) was purified from Escherichia coli. The steady-state kinetic parameters were measured by a coupled enzyme assay. An LC-MS/MS-based assay involving the direct quantification of the end product of the enzymatic reaction, 1-deoxy-D-xylulose 5-phosphate (DXP), was developed. The effect of different metabolites of the MEP pathway on PtDXS activity was tested. PtDXS was inhibited by IDP and DMADP. Both of these metabolites compete with thiamine pyrophosphate for binding with the enzyme. An atomic structural model of PtDXS in complex with thiamine pyrophosphate and Mg(2+) was built by homology modeling and refined by molecular dynamics simulations. The refined structure was used to model the binding of IDP and DMADP and indicated that IDP and DMADP might bind with the enzyme in a manner very similar to the binding of thiamine pyrophosphate. The feedback inhibition of PtDXS by IDP and DMADP constitutes an important mechanism of metabolic regulation of the MEP pathway and indicates that thiamine pyrophosphate-dependent enzymes may often be affected by IDP and DMADP.

DOI: 10.1074/jbc.M113.464636
PubMed: 23612965
PubMed Central: PMC3675625


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Feedback inhibition of deoxy-D-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway.</title>
<author>
<name sortKey="Banerjee, Aparajita" sort="Banerjee, Aparajita" uniqKey="Banerjee A" first="Aparajita" last="Banerjee">Aparajita Banerjee</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wu, Yan" sort="Wu, Yan" uniqKey="Wu Y" first="Yan" last="Wu">Yan Wu</name>
</author>
<author>
<name sortKey="Banerjee, Rahul" sort="Banerjee, Rahul" uniqKey="Banerjee R" first="Rahul" last="Banerjee">Rahul Banerjee</name>
</author>
<author>
<name sortKey="Li, Yue" sort="Li, Yue" uniqKey="Li Y" first="Yue" last="Li">Yue Li</name>
</author>
<author>
<name sortKey="Yan, Honggao" sort="Yan, Honggao" uniqKey="Yan H" first="Honggao" last="Yan">Honggao Yan</name>
</author>
<author>
<name sortKey="Sharkey, Thomas D" sort="Sharkey, Thomas D" uniqKey="Sharkey T" first="Thomas D" last="Sharkey">Thomas D. Sharkey</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23612965</idno>
<idno type="pmid">23612965</idno>
<idno type="doi">10.1074/jbc.M113.464636</idno>
<idno type="pmc">PMC3675625</idno>
<idno type="wicri:Area/Main/Corpus">002625</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002625</idno>
<idno type="wicri:Area/Main/Curation">002625</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002625</idno>
<idno type="wicri:Area/Main/Exploration">002625</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Feedback inhibition of deoxy-D-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway.</title>
<author>
<name sortKey="Banerjee, Aparajita" sort="Banerjee, Aparajita" uniqKey="Banerjee A" first="Aparajita" last="Banerjee">Aparajita Banerjee</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wu, Yan" sort="Wu, Yan" uniqKey="Wu Y" first="Yan" last="Wu">Yan Wu</name>
</author>
<author>
<name sortKey="Banerjee, Rahul" sort="Banerjee, Rahul" uniqKey="Banerjee R" first="Rahul" last="Banerjee">Rahul Banerjee</name>
</author>
<author>
<name sortKey="Li, Yue" sort="Li, Yue" uniqKey="Li Y" first="Yue" last="Li">Yue Li</name>
</author>
<author>
<name sortKey="Yan, Honggao" sort="Yan, Honggao" uniqKey="Yan H" first="Honggao" last="Yan">Honggao Yan</name>
</author>
<author>
<name sortKey="Sharkey, Thomas D" sort="Sharkey, Thomas D" uniqKey="Sharkey T" first="Thomas D" last="Sharkey">Thomas D. Sharkey</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Erythritol (analogs & derivatives)</term>
<term>Erythritol (chemistry)</term>
<term>Erythritol (genetics)</term>
<term>Erythritol (metabolism)</term>
<term>Escherichia coli (MeSH)</term>
<term>Hemiterpenes (chemistry)</term>
<term>Hemiterpenes (genetics)</term>
<term>Hemiterpenes (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Organophosphorus Compounds (chemistry)</term>
<term>Organophosphorus Compounds (metabolism)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Protein Binding (MeSH)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Sugar Phosphates (chemistry)</term>
<term>Sugar Phosphates (genetics)</term>
<term>Sugar Phosphates (metabolism)</term>
<term>Thiamine Pyrophosphate (chemistry)</term>
<term>Thiamine Pyrophosphate (genetics)</term>
<term>Thiamine Pyrophosphate (metabolism)</term>
<term>Transferases (chemistry)</term>
<term>Transferases (genetics)</term>
<term>Transferases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cinétique (MeSH)</term>
<term>Composés organiques du phosphore (composition chimique)</term>
<term>Composés organiques du phosphore (métabolisme)</term>
<term>Diphosphate de thiamine (composition chimique)</term>
<term>Diphosphate de thiamine (génétique)</term>
<term>Diphosphate de thiamine (métabolisme)</term>
<term>Escherichia coli (MeSH)</term>
<term>Hémiterpènes (composition chimique)</term>
<term>Hémiterpènes (génétique)</term>
<term>Hémiterpènes (métabolisme)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Oses phosphates (composition chimique)</term>
<term>Oses phosphates (génétique)</term>
<term>Oses phosphates (métabolisme)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Protéines recombinantes (composition chimique)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Transferases (composition chimique)</term>
<term>Transferases (génétique)</term>
<term>Transferases (métabolisme)</term>
<term>Érythritol (analogues et dérivés)</term>
<term>Érythritol (composition chimique)</term>
<term>Érythritol (génétique)</term>
<term>Érythritol (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Erythritol</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Erythritol</term>
<term>Hemiterpenes</term>
<term>Organophosphorus Compounds</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
<term>Sugar Phosphates</term>
<term>Thiamine Pyrophosphate</term>
<term>Transferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Erythritol</term>
<term>Hemiterpenes</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
<term>Sugar Phosphates</term>
<term>Thiamine Pyrophosphate</term>
<term>Transferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Erythritol</term>
<term>Hemiterpenes</term>
<term>Organophosphorus Compounds</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
<term>Sugar Phosphates</term>
<term>Thiamine Pyrophosphate</term>
<term>Transferases</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Érythritol</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Composés organiques du phosphore</term>
<term>Diphosphate de thiamine</term>
<term>Hémiterpènes</term>
<term>Oses phosphates</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
<term>Transferases</term>
<term>Érythritol</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Diphosphate de thiamine</term>
<term>Hémiterpènes</term>
<term>Oses phosphates</term>
<term>Populus</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
<term>Transferases</term>
<term>Érythritol</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Composés organiques du phosphore</term>
<term>Diphosphate de thiamine</term>
<term>Hémiterpènes</term>
<term>Oses phosphates</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
<term>Transferases</term>
<term>Érythritol</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Escherichia coli</term>
<term>Kinetics</term>
<term>Models, Molecular</term>
<term>Protein Binding</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Escherichia coli</term>
<term>Liaison aux protéines</term>
<term>Modèles moléculaires</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway leads to the biosynthesis of isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), the precursors for isoprene and higher isoprenoids. Isoprene has significant effects on atmospheric chemistry, whereas other isoprenoids have diverse roles ranging from various biological processes to applications in commercial uses. Understanding the metabolic regulation of the MEP pathway is important considering the numerous applications of this pathway. The 1-deoxy-D-xylulose-5-phosphate synthase (DXS) enzyme was cloned from Populus trichocarpa, and the recombinant protein (PtDXS) was purified from Escherichia coli. The steady-state kinetic parameters were measured by a coupled enzyme assay. An LC-MS/MS-based assay involving the direct quantification of the end product of the enzymatic reaction, 1-deoxy-D-xylulose 5-phosphate (DXP), was developed. The effect of different metabolites of the MEP pathway on PtDXS activity was tested. PtDXS was inhibited by IDP and DMADP. Both of these metabolites compete with thiamine pyrophosphate for binding with the enzyme. An atomic structural model of PtDXS in complex with thiamine pyrophosphate and Mg(2+) was built by homology modeling and refined by molecular dynamics simulations. The refined structure was used to model the binding of IDP and DMADP and indicated that IDP and DMADP might bind with the enzyme in a manner very similar to the binding of thiamine pyrophosphate. The feedback inhibition of PtDXS by IDP and DMADP constitutes an important mechanism of metabolic regulation of the MEP pathway and indicates that thiamine pyrophosphate-dependent enzymes may often be affected by IDP and DMADP.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23612965</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>08</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>288</Volume>
<Issue>23</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jun</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Feedback inhibition of deoxy-D-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>16926-36</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M113.464636</ELocationID>
<Abstract>
<AbstractText>The 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway leads to the biosynthesis of isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), the precursors for isoprene and higher isoprenoids. Isoprene has significant effects on atmospheric chemistry, whereas other isoprenoids have diverse roles ranging from various biological processes to applications in commercial uses. Understanding the metabolic regulation of the MEP pathway is important considering the numerous applications of this pathway. The 1-deoxy-D-xylulose-5-phosphate synthase (DXS) enzyme was cloned from Populus trichocarpa, and the recombinant protein (PtDXS) was purified from Escherichia coli. The steady-state kinetic parameters were measured by a coupled enzyme assay. An LC-MS/MS-based assay involving the direct quantification of the end product of the enzymatic reaction, 1-deoxy-D-xylulose 5-phosphate (DXP), was developed. The effect of different metabolites of the MEP pathway on PtDXS activity was tested. PtDXS was inhibited by IDP and DMADP. Both of these metabolites compete with thiamine pyrophosphate for binding with the enzyme. An atomic structural model of PtDXS in complex with thiamine pyrophosphate and Mg(2+) was built by homology modeling and refined by molecular dynamics simulations. The refined structure was used to model the binding of IDP and DMADP and indicated that IDP and DMADP might bind with the enzyme in a manner very similar to the binding of thiamine pyrophosphate. The feedback inhibition of PtDXS by IDP and DMADP constitutes an important mechanism of metabolic regulation of the MEP pathway and indicates that thiamine pyrophosphate-dependent enzymes may often be affected by IDP and DMADP.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Banerjee</LastName>
<ForeName>Aparajita</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Banerjee</LastName>
<ForeName>Rahul</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Yue</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yan</LastName>
<ForeName>Honggao</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sharkey</LastName>
<ForeName>Thomas D</ForeName>
<Initials>TD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>04</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C114232">2-C-methylerythritol 4-phosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045782">Hemiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009943">Organophosphorus Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013403">Sugar Phosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>358-71-4</RegistryNumber>
<NameOfSubstance UI="C004809">isopentenyl pyrophosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>358-72-5</RegistryNumber>
<NameOfSubstance UI="C043060">3,3-dimethylallyl pyrophosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.-</RegistryNumber>
<NameOfSubstance UI="D014166">Transferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.2.1.-</RegistryNumber>
<NameOfSubstance UI="C109461">deoxyxylulose-5-phosphate synthase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Q57971654Y</RegistryNumber>
<NameOfSubstance UI="D013835">Thiamine Pyrophosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>RA96B954X6</RegistryNumber>
<NameOfSubstance UI="D004896">Erythritol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004896" MajorTopicYN="N">Erythritol</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045782" MajorTopicYN="N">Hemiterpenes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="Y">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009943" MajorTopicYN="N">Organophosphorus Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013403" MajorTopicYN="N">Sugar Phosphates</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013835" MajorTopicYN="N">Thiamine Pyrophosphate</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014166" MajorTopicYN="N">Transferases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Deoxyxylulose-5-phosphate Synthase</Keyword>
<Keyword MajorTopicYN="N">Enzyme Inhibitors</Keyword>
<Keyword MajorTopicYN="N">Enzyme Structure</Keyword>
<Keyword MajorTopicYN="N">Isoprene</Keyword>
<Keyword MajorTopicYN="N">Isoprenoid</Keyword>
<Keyword MajorTopicYN="N">Methylerythritol Pathway</Keyword>
<Keyword MajorTopicYN="N">Plant Biochemistry</Keyword>
<Keyword MajorTopicYN="N">Thiamine</Keyword>
<Keyword MajorTopicYN="N">Thiamine Diphosphate</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>8</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23612965</ArticleId>
<ArticleId IdType="pii">M113.464636</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M113.464636</ArticleId>
<ArticleId IdType="pmc">PMC3675625</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10600-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9380681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2012 Oct 19;7(10):1702-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22839733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci. 2003 Sep;28(5):637-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14517367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jul 27;282(30):21573-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17442674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jun;22(6):503-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10886770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Dec;13(12):619-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18948055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Sep 1;414(1):129-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9305746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Nov;130(3):1079-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12427975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1989 Sep 11;255(1):77-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2792374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Feb 4;42(4):1140-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12549936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Jul;32(7):939-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19389050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem. 2012 Jul 15;20(14):4303-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22727779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12571359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2008 Jan;101(1):5-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17921528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9879-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9707569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Apr 13;43(14):4375-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15065882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1996 May 15;316 ( Pt 1):73-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8645235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2000 Apr;53(4):396-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10803894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Nov 5;460(3):485-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10556522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Feb;17(2):628-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1993 Oct 15;295 ( Pt 2):517-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8240251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 Nov 7;134(44):18374-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23072514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 1998 Sep;5(9):R221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9751645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr A. 2003 Feb 7;986(2):291-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12597635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 2002 Dec;12(12):813-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12499403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9482846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Jan;183(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11114895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Feb;36(2):429-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22831282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Sep 19;277(5333):1788-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9324768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1973 Dec 1;22(23):3099-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4202581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Aug;117(4):1423-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9701598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2000 Feb;182(4):891-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10648511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2004 Jun;61(12):1401-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15197467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12108-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12198182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biochim Pol. 2001;48(3):663-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11833775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:711-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Feb;155(2):1037-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21177471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 18;278(29):26666-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12736259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):1939-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15286290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2013 Apr;67(4):1026-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23550753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2005 Jan;3(1):17-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17168896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2001 Sep 1;296(1):101-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11520037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(12):3007-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2000 Sep 15;190(2):329-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11034300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta Med. 2006 Mar;72(4):329-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16557474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2100-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9482845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Jan 6;400(3):271-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9009212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jun 22;276(25):22901-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11264287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2000 Sep 22;481(3):221-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11007968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6431-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8692832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Dec 18;532(3):437-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12482608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1158-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11818558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12857-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9371765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Apr 1;448(1):115-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10217421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(10):2933-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19584121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jan 26;282(4):2676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17135236</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
<settlement>
<li>East Lansing</li>
</settlement>
<orgName>
<li>Université d'État du Michigan</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Banerjee, Rahul" sort="Banerjee, Rahul" uniqKey="Banerjee R" first="Rahul" last="Banerjee">Rahul Banerjee</name>
<name sortKey="Li, Yue" sort="Li, Yue" uniqKey="Li Y" first="Yue" last="Li">Yue Li</name>
<name sortKey="Sharkey, Thomas D" sort="Sharkey, Thomas D" uniqKey="Sharkey T" first="Thomas D" last="Sharkey">Thomas D. Sharkey</name>
<name sortKey="Wu, Yan" sort="Wu, Yan" uniqKey="Wu Y" first="Yan" last="Wu">Yan Wu</name>
<name sortKey="Yan, Honggao" sort="Yan, Honggao" uniqKey="Yan H" first="Honggao" last="Yan">Honggao Yan</name>
</noCountry>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Banerjee, Aparajita" sort="Banerjee, Aparajita" uniqKey="Banerjee A" first="Aparajita" last="Banerjee">Aparajita Banerjee</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002693 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002693 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23612965
   |texte=   Feedback inhibition of deoxy-D-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23612965" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020